Complex treatment needs can necessitate oral rehabilitation of patients. Often these patients will require a multi-disciplinary approach to correct problems. When patients have significant concerns, such as severe malocclusions or destruction of dental tissue, oral rehabilitation can entail extensive treatment that may involve reconstructions.

To return the patient to optimal function, regain normal form and address possible concerns such as esthetics, an integrated approach that involves various disciplines needs to be taken. The challenge posed to a particular treatment plan may involve the treatment of many teeth and possibly the need to prepare a significant number of teeth and corresponding dental tissue. Another challenge in reconstruction cases is the cost associated with the restoration of numerous teeth. Cost may be a factor for patients. There are often many options and approaches that can lead to the same successful treatment outcome. The variety of options can be at different ends of the spectrum. Diagnostic tools, including tomograms and the use of CAD/CAM systems, are useful in achieving complex treatment goals. This paper presents a treatment option that is an alternative to the reconstruction approach that produced a posteriorly displaced condyle. The correction of the incisor torque brought about a natural repositioning of the condyle and provided stability.

Case presentation
A 31-year-old male patient presented with the chief complaint of his upper front teeth restorations breaking off a few months after being placed. He has had the front teeth restored numerous times with the same outcome. A comprehensive examination and records revealed the following findings.

Medical history and functional concerns
There is a history of arthritis in the family. The patient experiences transient pain from his back, neck and shoulders. He has noted he clenches and grinds his teeth day and night. He was involved in a motor vehicle accident and sustained head trauma 12 years before his presentation to our office. Along with routine examination protocols, the temporomandibular joint (TMJ) was examined using a TMJ health questionnaire, range of motion examination, muscle palpation and TMJ imaging. TMJ findings and symptoms were: normal maximum opening to 53 mm; no limitation in excursion; at opening, there is a 2 mm deviation to the left. There is a posterior slide from centric relation to maximum intercuspation. The patient noted cracking noises from the TMJ at opening and closing, and there has been occasional locking of the TMJ through the years. He has slight hearing loss and tinnitus.

As a routine for patients exhibiting TMJ dysfunction, a TMJ tomogram series was taken. Tomographic series was achieved by use of a CranexTome (Soredex, Tuusula, Finland). The CranexTome has a unique spiral tomography for cross-sectional images. Interpretation of hard tissue imaging study would include the evaluation of condylar and temporal component morphology and integrity of the bony articulating surfaces. The TMJ is assessed for signs of remodeling, degenerative joint disease or morphological variations affecting the TMJ, jaw and skull.

Condylar position in maximum intercuspation is evaluated. The diagnostic tools are used not only for initial assessment to attain a working and definitive diagnosis, but during and after treatment to assess attainment of the treatment objectives. The corrected lateral TMJ view taken at maximum intercuspation reveals a posteriorly displaced condyle and morphological bending of the condyles (Fig. 1). The joint vibration analysis (JVA Bioresearch International, Milwaukee, Wis.) is used to assess TMJ health for patients and yielded normal vibrations of the TMJ.

Skeletal pattern
Based on a cephalometric analysis, the patient presented with a Class I skeletal pattern with a slight retrognathic mandible.

Occlusion
A visual examination and cast analysis revealed a Class II dental pattern with a deep overbite and tight overjet, fractured upper incisor restorations, slight crowding of the upper and lower arches, and severe worn dentition (especially the anterior teeth). The upper incisors were retroligned, and the upper and lower incisors had severe wear (Fig. 2).

There was generalized moderate wear on the posterior teeth. The patient presented with a posterior shift of 2 mm from centric relation to maximum intercuspation.

Treatment options
The following treatment options were presented to the patient:
- Reconstruction of the arches to achieve an ideal occlusion. This first option would entail splint therapy and eventual reconstruction to achieve a stabilized occlusion. This approach will provide a stable occlusion and would entailing restoration of numerous teeth — both anterior and posterior — to support the anticipated changes in vertical dimension.

In addition, although the treatment can be provided in a fairly short amount of time, the cost for the restorations can be significant for most patients.

Orthodontic options to achieve the best possible occlusion and orthopedic alignment. This approach provides for the patient an option to conserve dental structure, minimize the need for maintenance of the restorations and yield stable and functional occlusion, and allows cost for the treatment to be more manageable. The disadvantage is the time required to achieve orthopedic and orthodontic correction.

Treatment plan details
Straight wire appliance treatment (SWA) was proposed to attain ideal inter- and intra-arch alignment augmented by a mandibular repositioning mechanics by way of posterior build-ups and elastics or a fixed orthotic or use of a Twin Force Appliance. This phase of treatment was anticipated to last 20 months. After the orthodontic treatment, restoration of the six anterior or maxillary teeth with porcelain restorations would follow. The lower incisors will be evaluated for the need of restorations. The need for an upper brushing appliance would also be evaluated after the completion of the restorations.

Discussion of the treatment
The first phase of the treatment was the provision of orthodontic therapy using GAC Innovation C Self Ligating Bracket System. The Innovation C bracket system has a highly translucent porcelain structure and a rhodium coated clip, which provide superb esthetics as well as a high-torque component for the incisors of 17 degrees for the upper central and 10 degrees for the upper lateral incisors. One of the main goals for the treatment was the correction of the maxillary incisor torque. The retroclined upper incisors had contributed significantly to the severe wear of the anterior teeth and had resulted in an intercuspatation that produced a posteriorly displaced condyle. The correction of the incisor torque brought about a natural repositioning of the mandible, which was a treatment goal for the patient. The JVA, which has been proven effective in discriminating joint vibrations to assess TMJ1,2 conditions, was utilized to evaluate the TMJ during and after treatment. Anterior repositioning of the mandible has been described in the literature as a viable approach in the treatment of Class II malocclusions and TMJ dysfunction.

Conservative dentistry achieved through a multi-disciplinary approach
Combining orthodontics and CAD/CAM technology to achieve conservatism for a rehabilitation case

By Dr. Thomas Colina, DMD

Fig. 1 Corrected lateral tomograms of the TMJ at maximum intercuspation. Note the posteriorly displaced condyles that have undergone morphological bending of the condyles (Photos/Provided by Dr. Thomas Colina)

Fig. 1

Fig. 2

Fig. 2 Pretreatment photos.

Pretreatment photos.

Fig. 2

Fig. 3 Gelb 4/7 physiologic position.

Fig. 3 Gelb 4/7 physiologic position.

Fig. 3

mCME articles in Dental Tribune have been approved by HAAD as having educational content for CME credit hours. This article has been approved for 2 CME credit hours.

By Dr. Thomas Colina, DMD

Fig. 1 Corrected lateral tomograms of the TMJ at maximum intercuspation.

Fig. 2

Fig. 2

Fig. 2

Fig. 3 Gelb 4/7 physiologic position.

Fig. 3

Fig. 3

Fig. 3 Gelb 4/7 physiologic position.

Fig. 3

Fig. 3 Gelb 4/7 physiologic position.
WOODSIDE3 AND McNAMARA4 DESCRIBE THE ALLEVIATION OF THE CLASS II MALOCCLUSION. ANTERIOR REPOSITIONING THERAPY HAS HAD A HISTORY OF MORE THAN 50 YEARS. GELB5 REFERED TO HIS REPOSITIONING APPLIANCE IN 1969 AND DESCRIBED THE GELB 4/7 POSITION, WHICH IS CURRENTLY ACCEPTED IN THE LITERATURE AND RECOGNIZED BY MANY PRACTITIONERS TREATING TMJ DYSFUNCTION TO CORRELATE WITH THE PHYSIOLOGIC POSITION OF THE CONDYLE IN THE FOSSA (FIG. 3). SEVERAL FUNCTIONAL APPLIANCE DESIGNS AND THEIR EFFICACY OF IMPROVING TMJ DYSFUNCTION THROUGH MANDBULAR REPOSITIONING HAVE BEEN DESCRIBED IN LATER LITERATURE.7 SIMMONS’8 FURTHER DESCRIBES THE ALLEVIATION OF SYMPTOMS AFTER MANDIBULAR REPOSITIONING.

As noted, there was a natural anterior repositioning of the mandible upon removal of the centric interference in this patient, and appliance therapy was unnecessary. Posterior resin build-ups with Class II elastic therapy were sufficient to erupt the posterior teeth to achieve stability of the posterior segment. The condylar position was evaluated by use of progress tomograms and the use of JVA, could associated symptoms. Technology, such as to reconstruct the maxillomandibular relationship. Many patients requiring reconstruction commonly present with varying functional concerns, including TMJ dysfunction and associated symptoms. Technology, such as tomograms and the use of IVA, could serve as standard equipment in the diagnosis and treatment of these patients as well as aid in objectively evaluating the TMJ condition during and after the treatment. The goal of any treatment is to provide the patient with good esthetics, comfort and long-term function. The innovative melding of disciplines and the use of current materials and technology can allow conservation of dental tissue that is irreversibly altered and removed using the traditional reconstructive approaches.

References

Contact Information
Dr. Thomas Cali
DMA, is a general dentist practising in Winnipeg, Manitoba, Canada. He graduated from the University of Manitoba Faculty of Dentistry in 1989. His focus on providing comprehensive dental care often entails a multi-disciplinary approach. Colina is a member of the Manitoba Dental Association, Canadian Dental Association, Academy of General Dentistry and the International Association for Orthodontics. He is a senior certified instructor for the International Association for Orthodontics as well as a clinical instructor for the Department of Dental Diagnostic and Surgical Sciences, University of Manitoba Dental Faculty.
1-737 Keewatin St.
Winnipeg, Manitoba, Canada R3J 2R8
tcalina@mts.net